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Abstract
A framework is presented that emphasizes the need to understand the strengths and weaknesses of the data prior

to modeling.  In short, given a list of constraints, the idea is to let the data sort itself along those guidelines.  Once the
data has been organized into some coherent faction, the user has a better understanding of what the strengths and
weaknesses of the data are as the analysis proceeds.  The goal is to understand the character of the data so that the
user is not overwhelmed but is able to systematically organize and decompose information so as to facilitate the
analysis and build an effective model.  The data analyzed is that from an industrial fermentation but the framework
presented is generic enough that it can be used in any application involving multivariate time series data, such as
time varying microarray measurements.

Introduction
For the longest time, technology was the limiting factor in how many and the types of measurements an

experimentalist was able to collect, and the data analysis focused on what data that was made available.  Recent
advances, such as gene chips, 2-D electrophoresis, MALDI/SELDI mass spectrometry among others, however, have
reduced this bottleneck in data collection and have increased the data flowrate by orders of magnitude.
Unfortunately, the resulting information overload has often overwhelmed many traditional data analysis
methodologies used to dealing with either far smaller sample sizes and/or variables.  In particular, the size of the
newer data sets makes it difficult to perform “sanity”  checks on the quality of the information coming out.  There are
simply either too many samples or too many variables for the scientists to consider.  Approaches from the field of
data mining can be used to control this tide but the data-centric focus of the analysis is more insightful than the
techniques themselves.

In short, the goal of data mining is to extract knowledge from the data in the form of patterns (Fayyad, et al.,
1996).  To achieve this, data mining typically employs a wide variety of techniques from fields such as statistics,
artificial intelligence, machine learning, and pattern recognition among others.  Since the emphasis is on learning
what is in the data itself, data mining is more concerned with finding the patterns than employing a particular
algorithm and it is this philosophy that may prove to be an invaluable asset over other data analysis methodologies.
In analyzing biochemical and biotechnological systems, detailed mechanistic understanding is often limited.
Thousands of measurements are collected but the relationship among them is not well defined.  The end result is that
researchers must make use of the measurements that are available, try to identify patterns in the existing set of
measurements and attempt to correlate them to the system behavior.  The drawback to such empirical methodologies
is that the models are not initially based on scientific principles but derived from the data itself and so is highly
dependent on the nature of the data collected.  As technology makes it easier to collect large volumes of data, the
likelihood that a significant fraction of it may be highly redundant or even irrelevant to the modeling objective
increases.  Yet, many efforts in the modeling field have often focused more on developing and comparing different
data-driven models (e.g., artificial neural networks being superior to principal components analysis) rather than
addressing the impact of data quality on model performance as Kell and Sonnleitner, 1995 point out.  It may well be
that model A outperforms model B but this may come at a price if model A is far more sensitive to spurious
measurements compared to model B.  The issue is to try to account for data quality as it impacts model performance
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and to establish a sound foundation for model construction.  Thus, in the spirit of Kell and Sonnleitner’s paper on
Good Modeling Practices (Kell and Sonnleitner, 1995), this paper presents a framework for the rational design of
data-driven models and demonstrates the impact of assessing data structure on model performance.  Specifically,
historical records of an industrial fermentation will be used to classify the performance of new runs.

Figure 1 shows an overview of the proposed approach.  The techniques listed are not meant to be an exhaustive
but just a sampling of the algorithms that are available.  The user can choose to use either one or several of them in
combination during the course of the analysis.  For those familiar with the data mining process, there are several
additional steps that have not been listed but are also important such as data cleanup.  Here the emphasis is more
towards the model building aspect and assumes the data has already been properly transformed and cleaned.

Data Characterization

Data-Driven Modeling

Cluster Analysis (CA)
Mean Hypothesis Testing
Wavelet Transformation …

AutoAssociative Neural Nets
Decision Trees
Principal Components Analysis …

Figure 1 Overview of the framework to the rational design of data-driven models.

Methodology
The first step in this framework is characterization of the data. But prior to this, it is important that the objective

of the analysis be clearly identified.  The goal of data characterization is analogous to feature selection/extraction
phase as its primary purpose is to reduce the data overload.  Identifying the problem helps the users set criteria for
what types of features/variables they consider to be relevant.  In the context of this analysis, the goal is to classify
samples as being either high or low quality fermentations.  Hence, one criteria is to select those measurements for
which the ability to discriminate between the two classes is strong.  Identification of the most informative variables
has relied in the past on experience or the use of variable selection techniques associated with applied statistics, such
as Principal Component Analysis (PCA), regression, discriminant analysis, etc.  While these techniques are effective,
they suffer from the drawback that the variable selection is dependent on the quality of the other measurements.  For
example, in the case of multivariate regression and discriminant analysis, the presence of correlated measurements
can lead to unstable model coefficients that must be removed beforehand (Dillon and Goldstein, 1984; Mardia, et al.,
1979). While PCA avoids this collinearity problem, it still relies on the correlational structure of all the variables for
the variable selection. This aspect may be problematic if the number of non-informative (nondiscriminatory)
variables is high relative to informative ones since this is equivalent to increasing the background noise of the
system.  Furthermore, most of these techniques do not take into account the time-dependency of the data.  Variable
interactions may change over time and it is not always possible to know a priori when these changes occur.  To
address some of these issues, variable selection will be done through mean hypothesis testing (MHT).  Due to the
lack of space, the reader is referred to Kamimura, et al., 2000a for details.  In brief, MHT works by identifying
variables or combinations of variables that fail the null hypothesis of equivalent means.  Given two populations of
samples, in this case, high and low yield fermentations, this test subjects the variables to the hypothesis that their
population (class) means at each point in time are equivalent.  Variables that fail this test indicate that their behavior
on average is statistically different in the two classes as the mean can be used as an indicator of the overall behavior
of a measurement.  The algorithm uses the class means and their associated covariance matrices to construct a test
measure, called the Union Intersection Statistic.  This value is compared to a tabulated F-value for a given
significance level, normally 95%.  If the test statistic exceeds the tabulated F-value, the null hypothesis is rejected
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and the variable(s) under consideration are defined to be discriminating.  Although similar to multivariate analysis of
variance (MANOVA), the test has been adapted to handle time series data and the more general case of unequal
covariance matrices is considered (Mardia, et al., 1979).

Once the variables have been selected, the characterization still continues with the focus now being on the data
samples themselves.  It is important to consider how “well-behaved”  the data are.  Specifically, how homogeneous
are the samples as they are labeled as belonging to a particular category.  Often such assignments are made on the
basis of a single measurement or an assessment made at some point in time and may not be entirely consistent.  For
example, a population of patients may be described as being healthy but this does not imply that all of them have
very similar metabolic readings.  Subclasses may exist due to factors such as race and gender. The issue of data
homogeneity is often overlooked.   While an expert may be able to identify an uncharacteristic sample behavior and
also discern a finer classification, such decisions are often difficult to rationalize or expand to very large sets of data.
In addition, when dealing with large numbers of samples containing many variables, this task can become quite
daunting.

Classically, unsupervised approaches such as cluster analysis can be used to address this issue but the nature of
most biotechnological (and genomic) data limit their utility - specifically, the multivariate and often temporal aspect
of the data.  Cluster analysis is designed to handle feature vectors where a vector contained enough information to
characterize a sample.  This is not plausible for bioprocess data, which is in the form of matrices with time points in
the rows and measurements in the columns.  In addition to the author’s knowledge, work on extending cluster
analysis to time series has only considered a single variable (Shaw and King, 1992).  To circumvent these obstacles,
PC1 Time Series Clustering was developed (Kamimura, et al., 2000b).  It combines the dimensional reduction
capability of principal components analysis with the grouping power of cluster analysis.  The algorithm considers the
multivariate nature of the data by linearly combining the most relevant variables into the first principal component,
PC1.  The end result is a single vector over time, which carries information on the variable interactions.  It is this
vector that is then subjected to a hierarchical agglomerative clustering.  Samples with similar data structures are
grouped into the same cluster.  The number of clusters and their associated memberships reveals the extent of the
heterogeneity in the data.

Once the data has been characterized using the results from mean hypothesis testing and PC1 Time Series
Clustering, an autoassociative neural network (AANN) is constructed to model patterns of process behavior from
historical records.  Each new run is then classified by comparing the measurement profiles from the sample with
those of the different class models.  Model performance is determined by its ability to classify correctly lots that
were not present in the training phase.

The algorithm uses a classification scheme used in conjunction with the Soft Independent Modeling of Class
Analogy (SIMCA), (Wold and Sjostrom, 1977; Saner and Stephanopoulos, 1992).  SIMCA works by constructing
separate models for each data class and then fitting the unclassified sample to each model.  If the sample resembles
the members used in the training set of a class model, the resulting error in fit should be comparable to the error
observed during the training phase and the sample is tentatively assigned to the class represented by that model.
After all the class models examine the unclassified sample, a final classification is made by assigning the sample to
the class model with the best fit AND provided all the other models reject it.  If the unknown sample is accepted by
more than one class, then it is considered to fall in the both category (if two classes are used) and in the neither if
accepted by no group.  The both classification denotes that the sample appears to have characteristics shared by more
than one class, while the neither states that the sample is unlike those used in the model training sets and hence may
be representative of a new class altogether.  Thus, to be classified in a class, the sample must be a member of that
class alone and exclusive from the others.  With the use of MHT for variable selection, the likelihood of either the
both or neither classification is reduced but there can always be samples that lie near the class boundaries.

Considering only two classes, the following scoring system can be used under SIMCA:
1 if the sample belongs to class 1 (accepted by model 1 and rejected by model 2)
2 if the sample belongs to class 2 (accepted by model 2 and rejected by model 1)
0 if belonging to both classes (accepted by models 1 and 2)
3 if belonging to neither class (rejected by models 1 and 2)

As mentioned previously, one of the unique features of SIMCA's classification scheme is the ability to recognize
that a sample may have characteristics of several classes or none of them.  There are several reasons why this is
important.  First, when modeling classes that are very similar to each other, this classification scheme will show
many both classifications.  This could imply that the classes, as defined, do not allow for strong discrimination or
that the variables/time windows selected are not sufficiently discriminating.  Second, it is important to know when
the data under investigation is beyond the training set of the models.  A neither classification simply means that
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based on the training set provided, the unknown sample cannot be classified as it is sufficiently different from all the
classes considered.  This can be important, since a neither classification represents a situation not present in the
database used in the training set and may represent a new phenomena.

Autoassociative Neural Networks
Autoassociative neural networks are a specific type of artificial neural network trained to generate an identity

association in which the network outputs approximate the inputs using linear and sigmoidal transfer functions
(Kramer, 1991; 1992).  The architecture of these networks is such that they do not learn the identity mapping
perfectly.  An internal constraint in the form of a bottleneck - a layer of hidden nodes smaller in dimension than
either input or output - forces the network to reproduce an n-dimensional data set at its output using only f
independent variables with f < n.  The resulting identity mapping creates a global reduction of the data
dimensionality and allows the extraction of significant features by the bottleneck nodes.  The concept is similar to
that of principal components analysis (PCA) where, if redundancy is present, the data can be reconstructed with a
dimensional set smaller than the original data.

The architecture of the autoassociative network is shown in Figure 2.  The input to the network is a vector of
process measurements, so the size of the input layer corresponds to the dimension of the measurement vector.  Since
the output layer produces a reconstructed version of the inputs it is also of the same dimension as the input.  The
autoassociative network shown in Figure 2 contains three hidden layers, the mapping layer which models the
mapping function set, the bottleneck layer whose outputs capture the underlying correlational structure of the data,
and the demapping layer which models the demapping function set.  The nodes of the mapping and demapping layers
must consist of nonlinear transfer function to handle any arbitrary mapping and demapping function sets selected.
Nonlinear nodes, however, are not required in the bottleneck and output layers.

The training process is dynamic; the weights among the different layers of the network are allowed to evolve
until the correct mapping is obtained.  Network weights are adjusted by the backpropagation algorithm so that the
reconstructed measurements vector at the output layer matches the input as closely as possible, in a least-squares
sense, over the set of the training examples.  The final internal representation developed by the training procedure
retains the maximum amount of information from the original data set for a given degree of dimensional compression
represented by the number of nodes in the bottleneck layer.

Mathematically, AANN can be viewed as a nonlinear generalized version of PCA.  The input, mapping, and
bottleneck layers together represent a nonlinear function G which projects the inputs to a lower dimension space:

Tk = Gk(X) k = 1,…,f (1)

where Tk is the output of the kth bottleneck node and X is the input vector.  The bottleneck layer, the demapping
layer, and the output layer represent a second function H that reproduces an approximation of the inputs from the
features at the output of the bottleneck layer:

X
~

i = Hi(T) i = 1,…,n (2)

In summation, the data is first compressed to lower dimensionality and then reconstructed.  The loss of
information involved in this two-stage process is measured by the sum of the squares of the differences between the
inputs and the reconstructed outputs, summed over the training set, also referred to as the sum of squared errors
(SSE):

( )∑∑
= =

−=
n

1p

m

1i

2

pii X
~

XSSE (3)

where m is the number of the training examples used to train the network.  Minimizing the SSE during network
training results in maximum signal reconstruction and in minimum information loss.
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Figure 2 Architecture of AANN.

Using the SIMCA procedure, a separate network is trained for each of the two classes.  The procedure for
classification is as follows:

1) Each sample, representing a process lot with a specified time window and variables, is fitted to both
models, 1 and 2.

2) If the error generated by the sample lies within the standard reconstruction error  (the mean error
observed during the training phase +/- 2 standard deviations), it is tentatively assigned to that model’s
class.  Only if the other model rejects the sample, is it finally assigned the classification.  So, a class
1 rank means acceptance by eq. (4) and rejection by eq. (5), likewise for class 2:

SSEtr1 - 2* std1 < SSE < SSEtr1 + 2*std1 (4)

SSEtr2 - 2* std2 < SSE < SSEtr2 + 2*std2 (5)

where SSE is the sum of squared errors generated by fitting a sample to a model, SSEtri is the mean
SSE observed for the training set of model i, and stdi is the standard deviation of SSEtri observed
during the training phase of model i.

3) If it is observed that the sample fits both models, it is given a score of 0 - both eq. (4) and (5) are
satisfied.

4) If it is observed that the lot does not fit either class, it is given a score of 3 - both conditions outlined
in eq. (4) and (5) are rejected.

Results
The goal of this analysis was to use AANN’s to classify previously unseen samples.  The fermentation data

analyzed is described in Table 1.  On-line performance was simulated by testing the algorithm on a cross-validation
data set, separate from the model training set, with the goal to determine, as early as possible, the process outcome
from the measurements accumulated at a particular time point.  The following aspects were investigated with respect
to their effect on classification success: network design, effect of variable selection, effect of time window, and
training set design.  In the discussion below, lots whose numbers are between 1 and 22 (inclusive) are defined as
high by the industrial source, while lots with numbers 23 to 45 (inclusive) are defined as low.  It is important to note
that these are the official classifications assigned by the industrial source prior to the analysis by the algorithms
presented here.  The performance of the network is based on its ability to match the official classification.
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Table I - Conditions for industrial case study 1.

Type industrial fermentation
Mode fed-batch
Run length 82 time points
Number of variables 17 (only variables labeled 4-17 are used)
Number of classes 2
Lot/Class 22 for high class, 23 for low class

Network design
The network topology used in the present work is autoassociative, with two layers of non-linear hidden nodes.

Both the input and output layers contain equal number of nodes to the number of variables.  Bottleneck layers
contained 3 nodes when considering combinations of 4 variables and 6 nodes when using all the 14 variables.  The
networks were trained using the conjugate gradient version of backpropagation, as presented by Leonard and Kramer
(1990).  In all cases, a 90% reconstruction of all variables at the output layer was chosen as convergence criterion.
For simplicity, the dimensions of the mapping and demapping layers were assumed to be the same, while the number
of nodes in these layers was optimized according to Kramer (1991).  This yielded 8 nodes for the mapping and
demapping layers when considering combinations of 4 variables and 24 nodes when using all the 14 variables.  Also,
sigmoidal nodes were used in the mapping and demapping layers while a linear function was applied in all other
layers.  Before the training phase, all the data were auto-scaled so that input and output are bounded in the range (-
1,1).  The networks were designed, trained, and tested using modified versions of Matlab Neural Networks Toolbox
algorithms.

Effect of variable selection
Three different variable sets were examined under the same time periods, Table II.  Using all 14 process

measurements as a base case, the AANN system was at best able to classify only 66% of the samples correctly.  For
comparison, using all the variables for the entire time course, yielded a correct classification rate of 67%.  In
contrast, when only the most discriminating variables, uncovered by mean hypothesis testing (variables 4, 5, 9, and
11) are used, the classification rate improves to 80%.  This increase suggests that the network, in attempting to
reconstruct all data, sacrifices classification performance, representing an inefficient use of the data for the modeling
objectives.  It is interesting to also note that the neither classification (25%) is larger when all the variables are used
compared to the number of neither cases (7%) when only the discriminating variable subset is considered.  In the last
row of Table II, the classification accuracy drops to 27% when only a nondiscriminating set of variables, labeled as
13, 14, 16, and 17, is used.

Effect of time windows
In a dynamic process, different process measurements may display varying degrees of class discriminating

power at different windows of time. To study the influence of time, the process was divided into 4 time windows of
20 points each, 1-20, 20-40, 40-60, and 60-80.  Mean hypothesis testing (Kamimura, et al., 1999a) of the data
determined that the time windows 40-60 and 60-80 are discriminating, while the 1-20 window represents a non-
discriminating zone.  Table II summarizes the classification results showing the influencing of time windows.  It is
interesting to note that most of the data classifications in the early time windows (1-20 and 20-40) are in the both
category regardless of the variable subset considered.  This suggests that the data from high and low classes behave
so similarly to each other that they are practically indistinguishable. This observation has interesting ramifications as
it may indicate that the measurement readings are not sensitive enough to allow discrimination.  As the time window
proceeds along the course of the fermentation (40-60, 60-80), the information becomes more discriminating and the
algorithm’s ability to correctly predict the process outcome increases.  It should be emphasized that this
improvement over time will not always occur but is data dependent, see window 60-82 for the all variable and
discriminating variable subset and note how performance dropped.  In Kamimura, et al., 2000a, it was observed for
some processes the time window for discrimination is of finite duration and disappeared during the course of the run.
These observations point to the need to recognize that variable interactions may not be time-invariant and this should
be considered in any effort to increase model effectiveness.
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Table II - AANN classification results - Time window/Variable effect.

Variables Time Window Correct class Wrong class Neither class Both classes

[4-17] [1-20] 6 (13%) 4 (9%) 7 (16%) 28 (62%)
[20-40] 13 (29%) 1 (2%) 11 (25%) 20 (44%)
[40-60] 30 (66%) 3 (7%) 11 (25%) 1 (2%)
[60-82] 27 (60%) 1 (2%) 17 (38%) 0 (0%)

[4 5 9 11] [1-20] 4 (9%) 3 (7%) 3 (7%) 35 (77%)
[20-40] 17 (38%) 6 (13%) 2 (4%) 20 (44%)
[40-60] 36 (80%) 4 (9%) 3 (7%) 2 (4%)
[60-82] 34 (76%) 3 (7%) 6 (13%) 2 (4%)

[13 14 16 17] [1-20] 3 (7%) 2 (4%) 8 (18%) 32 (71%)
[20-40] 16 (36%) 5 (11%) 5 (11%) 19 (42%)
[40-60] 12 (27%) 1 (2%) 9 (20%) 23 (51%)
[60-82] 12 (27%) 4 (9%) 6 (13%) 23 (51%)

Effect of training set design
As mentioned previously, the official class assignment was designated by the industrial source.  The purpose of

this section is to illustrate the complications that can arise when the data are not as well-behaved as one might have
assumed.  Using the memberships of clusters generated by PC1 Time Series Clustering (Kamimura, et al., 2000b),
two types of training sets, a homogeneous and a heterogeneous one, were generated.  The homogeneous data sets
were designed to include lots from clusters whose membership consists predominantly, if not all, of members of the
same class.  The heterogeneous training sets, by contrast, attempt to capture as much of the variability present in the
data as possible, thus emphasizing a representative cross-section of the data from the major clusters.  For the high
class, this required taking members from group named 2 and group named 1 - being the two clusters where the high
class lots form a significant fraction of the membership.  For the low class, the selected members come from groups
named 3 and 5.  In Figure 3 are shown the time profiles of discriminating variables for some members of these
groups (Figure 3a, high class representative lots, Figure 3b, low class typical lots, Figure 3c, lots from mixed
clusters).

Table III summarizes the effect of different training sets on model performance focusing only on the 40-60 time
window and using variables [4 5 9 11].  The impact of using a homogeneous or a heterogeneous design is not as
strong as the variable or time window selection but is noticeable as explained by the 80% correct classification for
the heterogeneous versus the 64% for the homogeneous training set.  Not surprisingly, the homogeneous training set
produces a larger neither classification rate than the heterogeneous.  This can be attributed to the fact that with the
homogeneous training set the net is forced to be more sensitive to small differences present in high or low lots.

Table III - AANN classification results - Training set design effect.

Data Set Correct class Wrong class Neither class Both classes

Homogeneous 29 (64%) 4 (9%)   12 (27%) 0 (0%)

Heterogeneous 36 (80%) 4 (9%) 3 (7%) 2 (4%)

Conclusions
As demonstrated with the AANN, time windows and discriminating variables have a major impact on modeling

performance.  Selecting the wrong measurements or focusing on nondiscriminating time windows can lead to
erroneous conclusions about a model’s capabilities.  It is also important to recognize when to sample the data as this
case shows that some variables change character over time.  This observation in particular may be of relevance in the
analysis of microarray data as the interactions among genes may vary over time.  Increasing the sampling frequency
during periods of interest will provide more insight into the system behavior.
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Figure 3.  In all the figures only the four most discriminating variables are shown. a) Two representatives of  the
high class fermentation; b) two from the low; c) one from each class but belonging to a different cluster grouping.
Note how both lot 13 and lot 43 resemble each other as one might expect from the clustering but both have attributes
that are similar as well as different from their high and low brethren.
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It is also important to recognize the type of variability that exists in the data. While methods exist to identify
outliers, it is far more difficult to identify subclasses in the data.  As with the fermentation data, it may well be that
the groups the user has defined are not as homogeneous as were originally assumed.  This knowledge can be used to
decide if the model should be conservative (homogeneous) or robust (heterogeneous) to handle the variation
observed in the database. In the former, the emphasis is on increased confidence in the model accuracy whereas the
latter prefers a more robust classifier at the expense of higher misclassification.  By using techniques such as mean
hypothesis testing and PC1 Time Series Clustering with data-driven models such as AANN, the limit and potential
value of the data that is available for analysis can be better understood.  In the context of modeling, characterization
of the data provides a firm foundation upon which the model can be built.  These techniques have been applied with
success to other systems such as vaccine manufacturing, and genomic data.  With the former, it was possible to
identify where in the manufacturing process was responsible for variations in product quality.  In regards to the
latter, the analysis identified clusters of genes from 2 different metabolic states (anaerobic and aerobic) and reduced
the number of open reading frames (ORF’s) that had to be considered from 6153 to 737 split over 4 distinct clusters.
In particular the latter groupings were found to be highly correlated in terms of their metabolic function.
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